

R10049/17

…day June 20XX – Morning/Afternoon

GCSE (9–1) Computer Science

J277/02 Computational thinking, algorithms and programming

SAMPLE MARK SCHEME

 Time allowed: 1 hour 30 minutes

MAXIMUM MARK 80

SAMPLE MARK SCHEME

This document consists of 22 pages

Version 1.5

2

MARKING INSTRUCTIONS

PREPARATION FOR MARKING

SCORIS

1. Make sure that you have accessed and completed the relevant training packages for on–screen marking: scoris assessor Online Training;
OCR Essential Guide to Marking.

2. Make sure that you have read and understood the mark scheme and the question paper for this unit. These are posted on the RM

Cambridge Assessment Support Portal http://www.rm.com/support/ca

3. Log–in to scoris and mark the required number of practice responses (“scripts”) and the required number of standardisation responses.

YOU MUST MARK 10 PRACTICE AND 10 STANDARDISATION RESPONSES BEFORE YOU CAN BE APPROVED TO MARK LIVE
SCRIPTS.

 Assessment Objective
AO1 Demonstrate knowledge and understanding of the key concepts and principles of computer science.
AO1 1a Demonstrate knowledge of the key concepts and principles of computer science.
AO1 1b Demonstrate understanding of the key concepts and principles of computer science.
AO2 Apply knowledge and understanding of key concepts and principles of computer science.
AO2 1a Apply knowledge of key concepts and principles of computer science.
AO2 1b Apply understanding of key concepts and principles of computer science.
AO3 Analyse problems in computational terms:

• to make reasoned judgements
• to design, program, evaluate and refine solutions.

AO3 1 To make reasoned judgements (this strand is a single element).
AO3 2a Design solutions.
AO3 2b Program solutions.
AO3 2c Evaluate and refine solutions.

http://www.rm.com/support/ca

3

COMPONENT 2 SECTION B SYNTAX GUIDANCE

In Section B, certain questions require candidates to answer in either the OCR Exam Reference Language or the high-level programming language
they are familiar with. The information in this section provides generic guidelines in relation to the marking of these questions.

Where a response requires an answer in OCR Exam Reference Language or a high-level programming language, a candidate’s level of precision
will be assessed. These questions are designed to test both a candidate’s programming logic and understanding of core programming structures.

Marks will be given for correctly using syntax to represent core programming constructs which are common across all programming languages. The
construct must be present in a recognisable format in a candidate’s answer.

Where the response requires a candidate to respond using the OCR Exam Reference Language or a high-level programming language, answers
written in pseudocode, natural English or bullet points must not be awarded marks.

The guidance below covers the elements of each core construct. As guidance, several examples are provided for each. These examples are not
exclusive but do present a variety of acceptable ways taken from a range of different languages.

4

Concept Examiner Guidance
Commenting
// //This function squares a number

function squared(number)
 squared = number^2
 return squared
endfunction
//End of function

• Other examples allowable, e.g.:
o # this is a comment
o /* this is another comment */

Variables
=
const
global

x = 3
name = "Louise"
const vat = 0.2
global userID = "Cust001"

• Variables and constants are assigned using the = operator
• Constants are assigned using the const keyword (or similar)
• Identifiers should not have clear spaces within them or start with

numbers
• String values must use quotation marks (or equivalent)
• Assignment must use =, :=, (or a suitable alternative)
• variable identifier must be on the left when using OCR Exam

Reference Language and the value to be assigned on the right
• Some languages allow the value on the left- and the identifier on

the right-hand side
• Variables and constants are declared the first time a value is

assigned. They assume the data type of the value they are given
• Variables and constants that are declared inside a function or

procedure are local to that subroutine
• Variables in the main program can be made global with the

keyword global
• For input, a suitable command word for input and a variable

identifier to assign data to (if required)
e.g.
INPUT identifier
identifier = INPUT

5

Input/Output
input(…)

print(…)

myName = input("Please enter a
name")

print("My name is Noni")
print(myArray[2,3])

• For output, a command word for output (e.g. output, print, cout)
• Data to be output. If this is a string then quotation marks (or

equivalent) are required
• If multiple items are to output, a suitable symbol for concatenation

such as +, &.

Casting
str()

int()

real()

bool()

str(345)

int("3")

real("4.52")

bool("True")

• Variables can be typecast using the int str and float functions

Iteration
for … to …

next …

for … to … step …

next …

for i=0 to 9
 print("Loop")
next i

for i=2 to 10 step 2
 print(i)
next i

for i=10 to 0 step -1
 print(i)
next i

• for keyword
• …with counter variable
• Identification of number of times to iterate
• Clear identification of which section of code will be repeated (e.g.

using indentation, next keyword or equivalent, {braces})

6

while …

endwhile

while answer != "Correct"
 answer = input("New answer")
endwhile

• While / do..until key words or equivalent
• …with logical comparison
• clear identification of which section of code will be repeated (e.g.

using indentation, endwhile/until keyword or equivalent, braces)

do

until …

do
 answer = input("New answer")
until answer == "Correct"

Selection
if … then
elseif … then

else

endif

if answer == "Yes" then
 print("Correct")
elseif answer == "No" then
 print("Wrong")
else
 print("Error")
endif

• if key word followed by logical comparison
• key word for elseif or equivalent followed by logical

comparison
• key word for else or equivalent with no comparison
• clear identification of which section of code will be executed

depending upon decision

switch … :
 case … :
 case … :
 default:
endswitch

switch day :
 case "Sat":
 print("Saturday")
 case "Sun":
 print("Sunday")
 default:
 print("Weekday")
endswitch

• May be referred to differently in some languages. The format to
the left will be used in all questions

• switch/select key word or equivalent followed by variable/
value being checked

• key word for each case followed by variable/ value to compare to
• key word for default case (last option)
• clear identification of which section of code will be executed

depending upon decision

7

String handling/operations
.length subject = "ComputerScience"

subject.length gives the value 15

• Suitable key word to indicate length and string
identifier e.g. len(string)

.substring(x , i)

.left(i)

.right(i)

subject.substring(3,5) returns "puter"
subject.left(4) returns "Comp"
subject.right(3) returns "nce"

• Suitable string and characters required identified
• Use of key words such as left, right, mid,

etc, are all acceptable as long as these are precise
• Treating a string as an array of characters is

acceptable

+ (concatenation) print(stringA + string)
print("Hello, your name is : " + name)

• Alternate symbol used indicate two strings or values
are being concatenated is acceptable e.g. stringA
& stringB or stringA.stringB

• Use of comma e.g. print(stringA, stringB)is
acceptable to output multiple values but examiners
should be aware that this is not concatenation.

.upper

.lower

ASC(…)
CHR(…)

subject.upper gives "COMPUTERSCIENCE"
subject.lower gives "computerscience"

ASC ('A') returns 65 (numerical)
CHR(97) returns 'a' (char)

• Suitable key word to indicate string to be converted
and whether this is to be converted to upper or
lower case e.g. lower(stringname)

• Suitable keyword to indicate conversion and
whether this is to or from ASCII. Where converting
from ASCII, an integer value must be given and
where converting to ASCII, a single character must
be given.

8

File handling
open(…) myFile = open("sample.txt") • open keyword (or equivalent)

• read or write clearly identified
• write or read keyword (or equivalent)
• close file keyword (or equivalent)
• newFile keyword (or equivalent)

.close() myFile.close()

.readLine() myFile.readLine()returns the next line in the file

.writeLine(…) myFile.writeLine("Add new line")

.endOfFile() while NOT myFile.endOfFile()
 print(myFile.readLine())
endwhile

newFile() newFile("myText.txt")

Arrays
array colours[…]

array gameboard[…,…]

array colours[5]

array colours = ["Blue", "Pink", "Green",
"Yellow", "Red"]

array gameboard[8,8]

• Array identifier
• Index number to be accessed in square brackets,

rounded brackets or curly braces (all acceptable)

• Array identifier assigned to initial values in one step

• For 2D arrays, the two indices should be given in one

bracket separated by a comma or in two separate
brackets, e.g.
gameboard[4,6]
gameboard[4][6]

Where 2D arrays are represented by tables in a
question, candidates are expected to use the same
row/column or column/row format as given in the
question. This will always be given.

names[…] = …
gameboard[…,…] = …

names[3] = "Noni"
gameboard[1,0] = "Pawn"

9

Sub programs
procedure name (…)

endprocedure

procedure agePass()
 print("You are old enough to ride")
endprocedure

procedure printName(name)
 print(name)
endprocedure

procedure multiply (num1, num2)
 print(num1 * num2)
endprocedure

• function or procedure key word (or equivalent)
• … followed by identifier
• Any parameters passed in are contained within

brackets and come after identifier name
• Clear identification of which section of code is

contained within the subroutine (e.g. indentation,
endsub key word, braces)

• functions only: a suitable method of returning a value

(e.g. return keyword or assignment of value to
function identifier)

e.g.
def newfunction(x,y)
 total = x + y
 newfunction = total

procedure(parameters) agePass()

printName(parameter)

multiply(parameter1, parameter2)

function name (…)
 …
 return …
endfunction

function squared(number)
 squared = number^2
 return squared
endfunction

function(parameters) print(squared(4))

newValue = squared(4)

10

Random numbers
random(…,…) myVariable = random(1,6)

myVariable = random(-1.0,10.0)

• random key word (or equivalent)
• identification of either smallest and largest number to

be chosen or just largest number

e.g.
randnumber(10)
rand(1,6)

Comparison operators • = or == are both acceptable for equal to.
• <> is acceptable for not equal to.
• Care must be taken by candidates to ensure that > and < are not mixed up.
• Candidates must understand that < and > are non-inclusive, so that <9 does not

include 9. This is different than <=9 which is inclusive and therefore does include
9.

• Alternative symbols for arithmetic operators are acceptable where these appear
in other high-level languages (such as % for MOD or ** for exponentiation).

• 6 x 5 is not an acceptable alternative for multiplication.
• Alternative logical operators are acceptable where these appear in other high-

level languages (such as && for AND).
• Alternative Arithmetic Operators may be used as well (such as % for modulus).
• Candidates must be aware that logical operators must be used correctly:

if x > 0 AND x < 10 is logically correct.
if x > 0 AND < 10 is not logically correct.

== Equal to <= Less than or equal to
!= Not equal to > Greater than
< Less than >= Greater than or equal to

Boolean operators
AND Logical AND
OR Logical OR
NOT Logical NOT

Arithmetic operators
+ Addition
- Subtraction
* Multiplication
^ Exponent
/ Division
MOD Modulo
DIV Quotient

11

SECTION A
Question Answer Marks Guidance

1 a A B P

 1
 1

2
(AO1 1b)

1 mark for each correct answer in table

‘True’ or ‘T’ are also credit worthy.

b

1
(AO1 1b)

Correct Answer Only

2 a • input("enter first number")

• if

• num2

• print (num1)
• print (num2)

5
(AO3 2b)

Allow equivalent pseudocode expressions
Variables must not have speech marks around them

b • use of condition controlled loop (while or do/until)…
• …checking condition of number larger than or equal to 0
• Input number from user within loop (FT if no loop)
• multiply number input by 2…
• ….output value in number

5
(AO3 2b)

e.g. 1
store 10 in number
while number is greater than or equal to 0 do the
following:
Take input from the user, store in number
Multiply number by 2
Output number

e.g. 2
while number >= 0
 number = input()
 output(number * 2)
Ignore non-initialisation of value used in condition for
loop.

12

SECTION A
Question Answer Marks Guidance

3 • SELECT StudentName, Subject, Grade
• FROM Results
• WHERE Subject = "Art"

1
(AO1 1b)

2
(AO3 2a)

Correct Answer Only

Accept SELECT *

4 a • RebEl 1
(AO2 1b)

Correct Answer Only (allow any case)

b i • uitFr 1
(AO2 1b)

Correct Answer Only (allow any case)

ii
• Taking firstname, surname and teacher or student as

input
• Checking IF role is teacher/student (using

appropriate selection)
• For teacher ...Generating last 3 letters of surname

using appropriate string manipulation
• ...Generating first 2 of letters of firstname and adding

to previous
• For student.... correctly calculating as before
• Correct concatenation and output

e.g.
Ask the user to input the data, store in variables firstname,
surname and role.
Check whether the role entered is teacher. If it is, join the
right 3 most letters in surname with the left 2 letters in
firstname. Store this in username.
If it is not teacher, join the left 3 letters from firstname with
the left 2 letters from surname. Store this in username.
Output the value in username.

6
(AO3 2b)

1 mark for each correct bullet to a maximum of 6.

If used, a flowchart should represent the bulleted steps
in the answer column.

13

SECTION A
Question Answer Marks Guidance

5 a • To convert it to binary/machine code
• The processor can only understand machine code

1
(AO1 1a)

Maximum 1 mark

b • Compiler translates all the code in one go…
• …whereas an interpreter translates one line at a time
• Compiler creates an executable…
• …whereas an interpreter does not/executes one line

at a time
• Compiler reports errors at the end…
• …whereas an interpreter stops when it finds an error

4
(AO1 1b)

1 mark to be awarded for the correct identification and
one for a valid description up to a maximum of 4 marks.
No more than 2 marks for answers relating only to
interpreters and no more than 2 marks for answers only
relating to compilers.

6 a

crime bait fright victory nibble loose
bait crime fright victory nibble loose
bait crime fright nibble victory loose
bait crime fright nibble loose victory
bait crime fright loose nibble victory

4
(AO2 1b)

1 mark for each row from rows 2–5. Allow multiple
swaps in one stage, where it is clear that a bubble sort
has been applied.

14

SECTION A
Question Answer Marks Guidance

6 b • Comparing zebra to orange
• Greater, so split and take right side
• Further comparison (1 or 2 depending on choices

made)
• Correct identification of zebra using methodology

above

e.g.

compare zebra to orange

greater, split right

compare to wind

greater, split right

compare to zebra

4
(AO2 1b)

1 mark per bullet (multiple ways through, marks
awarded for appropriate comparison and creation of
sub groups).

7

a 1 mark for naming the example and 1 mark for an example
related to that method

E.g

• Comments/annotation…
• …E.g. any relevant example, such as line 4 checks

the input is valid

• Indentation…
• …E.g. indenting within IF statement

• Using constants…
• …E.g. π

4
(AO2 1b)

15

SECTION A
Question Answer Marks Guidance

7 b • radius
• area

2
(AO1 1b)

1 mark per bullet up to a maximum of 2 marks.

c i • 3.142
• 2
• 1
• 30

1
(AO2 1a)

1 mark for one correct identification.

c ii • The number does not need to be changed while the
program is running

• The number can be updated once and it updates
throughout

1
(AO1 1a)

Maximum of 1 mark.

d • HAS been used
• HAS been used
• HAS NOT been used

3
AO2 1b

e • Error diagnostics (any example)
• Run-time environment
• Editor (any feature such as auto-correct, auto-indent)
• Translator
• Version control
• Break point
• Stepping

2
(AO1 1a)

1 mark per bullet to a maximum of 2 marks.
Only 1 example per bullet, e.g. auto-correct and auto-
indent would only gain 1 mark.

16

SECTION B
Question Answer Marks Guidance

8

a

 Integer (1)…

• …number of seconds not important (1)
• … level of accuracy not needed so round to nearest

minute (1)
• …using a decimal to store seconds (0-60) is not

appropriate (1)

Real (1)…

• … number of seconds may be important (1)

• … allows parts/fractions to be stored over integers (1)

1
(AO3 2a)

1
(AO3 1)

One mark for appropriate data type identified.

One mark for appropriate justification linked to the data
type chosen.

8 b i • or

• >300 // >= 301

• print

3
(AO3 2b)

High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural English.

MP2 do not accept ‘greater than’, must use the HLL
syntax > or >=
MP3 must be a suitable output command word that
could be found in a HLL e.g. print (Python),
console.writeline (VB), cout (C++)

b ii • Suitable invalid test data (i.e. > 300, e.g. 350)
• "Value accepted" or equivalent

2
(AO3 2c)

17

SECTION B
Question Answer Marks Guidance

8 c print (minsPlayed[0,4]) 1
(AO3 2b)

High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural English.

print may be a suitable output command word that
could be found in a HLL e.g. print (Python),
console.writeline (VB), cout (C++)

The array elements may be accessed together [0,4]
(VB.NET) or separately [0][4] (Python)

8 d • Initialises total as 0 and prints out total the end (as per
original program)

• Uses iteration, e.g. FOR, WHILE
• …that repeats 5 times
• …correctly adds up values using loop index

e.g.
total = 0
for x = 0 to 4
 total = total + hoursplayed[2, x]
next x
console.writeline(total)

e.g.
total = 0
for x in range (0, 4)
 total += hoursplayed[2][x]
next x
print (total)

4
(AO3 2c)

High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural English.

MP1 must have appropriate identifier, = and then the
numeric 0
MP2 must have for or while
MP3 must have the for stopping condition 4/5
MP4 must have the same identifier for MP1 and equal
and + to add the data in the array (using either [x,y]
or [x][y]. This could be total = total + …. Or
total += ….

18

SECTION B
Question Answer Marks Guidance

e.g.
total = 0;
for (int x = 0; x <= 4; x++){
 total = total + hoursplayed[2][x];
}
System.out.println (total);

8 e

 x y output

MP1 15 0

MP2
14 1

12 2

MP3

9 3

5 4

0 5

MP4 5

4
(AO3 2c)

one mark for first row

one mark for row 2 and 3

one mark for rows 4, 5, and 6

one mark for the correct output (the only value in the
output column, in any position)

8 f 1 mark per bullet
• Test data either 0 or less characters, or 20 or more

characters
• Stating correct output

• Test data between 1 and 19 characters (inc)
• Stating correct output

4
(AO3 2c)

Mark test data first, both must meet different criteria.
Then mark output for each.

19

SECTION B
Question Answer Marks Guidance

8 g i Input
• Number of hours and minutes

Output

• Number of minutes

2
(AO3 2a)

g ii • Program calls function correctly using hours and minutes
variables

• Parameters used appropriately
• Calculation is computed accurately
• Final total is returned suitably

4
(AO3 2a)

hours = input("Please enter number of
hours played")

minutes = input("Please enter number of
minutes played")

finalTotal = totalMins(hours, minutes)

print (finalTotal)

function totalMins(hours,minutes)

total = (hours * 60) + mins

return total

endfunction

1. Parameters named in function must be used

within the function itself
2. Does not matter if function uses different names

to those declared in main program
3. Return must be included with the correct local

variable for total

20

SECTION B
Question Answer Marks Guidance

8 g iii • Takes input from the user
• Compares if input is larger than 120…
• …if true, outputs "You played games for too

long!"
• …if false, outputs "You are under your time

limit!"

4
(AO3 2b)

High-level programming language / OCR Exam
Reference Language response required

Do not accept pseudocode / natural English.

Example algorithm given below

minutes = input("Enter minutes played")
if minutes > 120
 print "You played games for too long!"
else
 print "You are under your time limit!"
endif

Accept alternative (but suitable) output messages.

Accept logical comparison of input less than or equal to
120 and appropriate True/False statements.

21

Summary of updates

Date Version Details

February 2024 1.5 Mark scheme syntax guidance table:
• String handling/operations on page 7: added single quotations around ('A') and corrected formatting of 'a'.
• Arithmetic operators on page 10: updated Modulus to Modulo.

October 2023 1.4 Updated the advice on the front cover to include timing recommendations for Section A and B. Timing
recommendation has been added at the start of Section A and updated at the start of Section B.

July 2020

1.3 • Question 2a increased to 5 marks. Reflected in the mark scheme.
• Question 8b(ii) reduced to 2 marks. Reflected in the mark scheme.

June 2020 1.2 • Updated question 8(c) from ‘Write program code’ to ‘Write a line of code’

• Updated mark scheme guidance on page 19 for question 8(g)(ii) from total = hours + mins * 60 to
total = (hours * 60) + mins

• Syntax ‘Guide’ updated to Syntax ‘guidance’
• Within the syntax guidance, added concatenation and an additional way of declaring 1D arrays
• Corrected typos

October 2019 1.1 • Updated question 1(a) and the mark scheme to reflect that teachers more commonly use ‘0’ and ‘1’ rather than

‘True’ and ‘False’.
• Question 8(f) on page 17 - updated the ‘v’ in ‘valid’ to lower case
• Mark scheme on page 10 - minor reformatting of the Operators table
• Mark scheme on page 17 – added ‘while’ to the MP2 guidance column
• Mark scheme on page 20 - updated ‘mins’ to ‘minutes’ and capitalised ‘E’ in ‘Enter’

September 2019 1 To clearly differentiate the updated approach for the external assessment of Practical Programming skills for first

teach 2019 / first assessment 2022, we have updated our qualification code from J276 to J277.

September 2019 1

We’ve introduced sectioning – Section A and Section B. Section B contains questions that relate to the updates
made to our qualification for first teach 2020 / first assessment 2022 where we assess Practical Programming skills
in the examination. Some questions in Section B require candidates to answer in either the OCR Exam Reference
Language or a high-level programming language.

22

Mapping of questions:

J277 SAM J276 SAM
1(a) 3 (c)
1(b) new
2(a) new
2(b) new
3 new
4(a) updated 4(a)
4(b) (i) and 4(b) (ii) 4(b)
5(a) 5(a)
5(b) 5(b)
6(a) 7(a)
6(b) 7(b)
7(a) 8(a)
7(b) 8(b)
7(c)(i) and 7(c)(ii) 8(c)(i) and (c)(ii)
7(d) new
7(e) 8(d)
8(a) new
8(b)(i) new
8(b)(ii) new
8(c) 6(c)(i)
8(d) new
8(e) new
8(f) 6(d)
8(g)(i) new
8(g)(ii) 6(e)
8(g)(iii) new

September 2019 1 We’ve reviewed the look and feel of our papers through text, tone, language, images and formatting. For more
information please see our assessment principles in our ‘Exploring our question papers’ brochure on our website.

